
International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 766
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

An Approach of Web Crawling and Indexing of
Nutch
N. KOWSALYA

ASSISTANT PROFESSOR
DEPARTMENT OF COMPUTER APPLICATIONS

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN
(AUTONOMOUS)

TIRUCHENGODE-05, TAMILNADU

Abstract-Nutch has a highly modular architecture. Crawling is the operation that navigates and retrieves the information in web pages,
populating the set of documents that will be searched. Typically, at the centre of any IR system is the inverted index. For each term, the
inverted index contains a posting list, which lists the documents represented as integer document-IDs (doc-IDs) containing the term. The
nutch command eliminates duplicate documents from a set of Lucene indices for Nutch segments. Nutch also has to add support for
HTML extraction to Lucene. Nutch includes a link analysis algorithm similar to PageRank. The WebDB containing the web graph of pages
and links. These lists contain every URL we’re interested in downloading. The query engine part consists of one or more front-ends, and
one or more back-ends. Each back-end is associated with a segment of the complete data set. The driver represents external users and it
is the point at which the performance of the query is measured, in terms of queries per second (qps).

Index Terms – Crawling; Retrieving; Indexing; Link analysis; PageRank; Web DB; Web Graph;

—————————— ——————————

1 Introduction:
Apache Nutch is an open source web crawler that

is used for crawling websites. It is extensible and scalable. It
provides facilities for parsing, indexing, and scoring filters
for custom implementations. Nutch is an effort to build an
open source search engine based on Lucene Java for the
search and index component. It has a highly modular
architecture, allowing developers to create plug-ins for
media-type parsing, data retrieval, querying and clustering.
Nutch is a complete open-source Web search engine
package that aims to index the World Wide Web as
effectively as commercial search services. As a research
platform it is also promising at smaller scales, since its
flexible architecture enables communities to customize it;
and can even scale down to a personal computer. Its
founding goal was to increase the transparency of the Web
search process as searching becomes an everyday task. The
nonprofit Nutch Organization supports the open-source
development effort as it addresses significant technical
challenges of operating at the scale of the entire public Web.
Nutch server installations have already indexed 100M-page
collections while providing state-of-the-art search result
quality. At the same time, smaller organizations have also
adopted Nutch for intranet and campus networks. At this
scale, all of its components can run on a single server.
Nutch is an open-source project hosted by the Apache
Software Foundation. Nutch provides a complete, high-
quality Web search system, as well as a flexible, scalable
platform for the development of novel Web search engines.
Nutch includes:

• a web crawler;

• parsers for web content;
• a link-graph builder;
• schemas for indexing and search;
• distributed operation, for high scalability;
• an extensible, plugin-based architecture.

Nutch is implemented in Java and its code is open source.
Thus runs on many operating systems and a wide variety
of hardware.
2 Nutch Architecture:

Nutch has a highly modular architecture that uses
plug-in APIs for media-type parsing, HTML analysis, data
retrieval protocols, and queries. The core has four major
components:

Searcher: Given a query, it must quickly find a small
relevant subset of a corpus of documents, and then present
them. Finding a large relevant subset is normally done
with an inverted index of the corpus; ranking within that
set to produce the most relevant documents, which then
must be summarized for display.

Indexer: Creates the inverted index from which the
searcher extracts results. It uses Lucene storing indexes.

Database: Stores the document contents for indexing and
later summarization by the searcher, along with
information such as the link structure of the document
space and the time each document was last fetched.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 767
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fetcher: Requests web pages, parses them, and extracts
links from them. Nutch’s robot has been written entirely
from scratch.

Figure-1 outlines the relationships between
elements that refer on each other, placing them in the same
box, and those they depend on in a lower layer. For
example, protocol does not depend on net, because protocol
is only an interface point for plugins that actually provide
much of Nutch’s functionality.

 Figure-1 Nutch Architecture

2.1 Crawling:

Crawling is the operation that navigates and
retrieves the information in web pages, populating the set
of documents that will be searched. This set of documents
is called the corpus, in search terminology. Crawling can be
performed on internal networks (Intranet) as well as
external networks (Internet). Crawling, particularly in the
Internet, is a complex operation. Either intentionally or
unintentionally, many web sites are difficult to crawl.
Sophisticated technology is required to develop a good
crawler.

The performance of crawling is usually limited by
the bandwidth of the network between the system doing
the crawling and the outside world. In the Commercial
Scale Out project, system setup did not have a high-
bandwidth connection to the outside world and it would
take a long time to populate the system with enough
documents to create an interesting corpus.

An intranet or niche search engine might only take
a few hours to crawl, in a single-machine while a whole-
web crawl might take many machines several weeks or
longer. A single crawling cycle consists of generating a
fetchlist from the webdb, fetching those pages, parsing
those for links, then updating the webdb. In the
terminology of Nutch's crawler supports both a crawl-and-
stop and crawl-and-stop-with-threshold (which requires
feedback from scoring and specifying a floor). It also uses a

uniform refresh policy; all pages are refetched at the same
interval (30 days, by default) regardless of how frequently
they change. Java can set individual recrawl-deadlines on
every page). The fetching process must also respect
bandwidth and other limitations of the target website.
However, any polite solution requires coordination before
fetching, Nutch uses the most straightforward localization
of references possible namely, making all fetches from a
particular host run on one machine.

2.2 Indexing:

To allow efficient retrieval of documents from a

corpus, suitable data structures must be created,
collectively known as an index. Usually, a corpus covers
many documents, and hence the index will be held on a
large storage device – commonly one or more hard disks.
Typically, at the centre of any IR system is the inverted
index. For each term, the inverted index contains a posting
list, which lists the documents represented as integer
document-IDs (doc-IDs) containing the term. Each posting
in the posting list also stores sufficient statistical
information to score each document, such as the frequency
of the term occurrences and, possibly, positional
information (the position of the term within each
document, which facilitates phrase or proximity search) or
field information (the occurrence of the term in various
semi-structured area of the document, such as title,
enabling these to be higher-weighted during retrieved).
The inverted index does not store the textual terms
themselves, but instead uses an additional structure known
as a lexicon to store these along with pointers to the
corresponding posting lists within the inverted index. A
document index may also be created which stores meta-
information about each document within the inverted
index, such as an external name for the document (e.g.
URL), and the length of the document. The process of
generating these structures is known as indexing.

2.2.1 Indexing Text:

Lucene meets the scalability requirements for text

indexing in Nutch. Nutch also takes the advantage of
Lucene’s multi-field case-folding keyword and phrase
search in URLs, anchor text, and document text. The typical
definition of Web search does not require some index types
which Lucene does not address, such as regular-expression
matching (using, say, suffix trees) or document-similarity
clustering (using, say, term-vectors).

2.2.1 Indexing Hypertext:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 768
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Lucene provides an inverted-file full-text index,
which suffices for indexing the text but not the additional
tasks required by a web search engine. In addition to this,
Nutch implements a link database to provide efficient
access to the Web's link graph, and a page database that
stores crawled pages for indexing, summarizing, and
serving to users, as well as supporting other functions such
as crawling and link analysis. In the terminology of one
web search engine survey, Nutch combines the text and
utility databases into its page database. Nutch also has to
add support for HTML extraction to Lucene. When a page
is fetched, any embedded links are considered for addition
to the fetchlist and that link’s anchor text is also stored.
What is eventually indexed by Lucene is only the text of a
Web page, though, while a high-fidelity copy is stored in
the page database, font, heading, and other structural
information does not propagate to the Lucene indexing
layer.

2.2.3 Removing Duplicates:

The nutch command eliminates duplicate

documents from a set of Lucene indices for Nutch
segments, so it inherently requires access to all the
segments at once. It's a batch-mode process that has to be
run before running searches to prevent the search from
returning duplicate documents. It uses temporary files
containing the 5-tuple (MD5 hash, float score, int indexID,
int docID, int urlLen) for each page. Presumably the
documents with the same URLs were fetched at different
times, so Nutch tries to sort the records so that the ones for
the newest fetches come first. A second pass, using
hash=MD5 (content) and slightly different sorting rules,
eliminates multiple URLs for the same document from the
index.
2.2.4 Link Analysis:

Nutch includes a link analysis algorithm similar to

PageRank. It even uses 15 as the random-jump
probability. It is performed by the Distributed Analysis
Tool (DAT), even the single-machine Link Analysis Tool
(LAT) merely calls into it. It uses an iterative method, for
solving for a matrix value directly. Nutch has already
demonstrated the ability to harness multiple servers to
compute link ranking for 100Mpage subsets of the World
Wide Web. Distributed link analysis is a bulk synchronous
parallel process. At the beginning of each phase, the list of
URLs whose scores must be updated is divided up into
many chunks; in the middle, many processes produce
score-edit files by finding all the links into pages in their
particular chunk. At the end, an updating phase reads the
score-edit files one at a time, merging their results into new
scores for the pages in the web database. Distributed

analysis doesn’t use Nutch’s homegrown IPC service; like
fetching, work is coordinated through the appearance of
files in a shared directory. There are better techniques for
distribution (MapReduce) and accelerating link analysis.

Nutch includes a parallel indexing operation
written using the MapReduce programming model.
MapReduce provides a convenient way of addressing an
important class of real-life commercial applications by
hiding the parallelization and the fault tolerance from the
programmers, letting them focus on the problem domain.
MapReduce was published by Google in 2004 and quickly
became a popular approach for parallelizing commercial
workloads.

A parallel indexing operation in the MapReduce
model works as follows. First, the data to be indexed is
partitioned into segments of approximately equal size. Each
segment is then processed by a mapper task that generates
the (key, value) pairs for that segment, where key is an
indexing term and value is the set of documents that contain
that term (and the location of the term in the document).
This corresponds to the map phase, in MapReduce. In the
next phase, the reduce phase, each reducer task collects all
the pairs for a given key, thus producing a single index
table for that key. Once all the keys are processed, we have
the complete index for the entire data set.
2.3 A Link Graph Builder:

The WebDB containing the web graph of pages

and links. WebDB is a persistent custom database that
tracks every known page and relevant link. It maintains a
small set of facts about each, such as the last-crawled date.
WebDB is meant to exist for a long time, across many
months of operation. Since WebDB knows when each link
was last fetched, it can easily generate a set of fetchlists.
These lists contain every URL we’re interested in
downloading. WebDB splits the overall workload into
several lists, one for each fetcher process. URLs are
distributed almost randomly; all the links for a single
domain are fetched by the same process, so it can obey
politeness constraints. The fetchers consume the fetchlists
and start downloading from the Internet. The fetchers don’t
overload a single site with requests, and they observe the
Robots Exclusion Protocol. (This allows Web-site owners to
mark parts of the site as off-limits to automated clients such
as our fetcher.) Otherwise, the fetcher blindly marches
down the fetchlist, writing down the resulting downloaded
text. Fetchers output WebDB updates and Web content. The
updates tell WebDB about pages that have appeared or
disappeared since the last fetch attempt. The Web content is
used to generate the searchable index that users will
actually query.
2.4 Querying:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 769
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

In most search applications, query represents the
vast majority of the computation effort. When performing a
query, a set of indexing terms is presented to a query
engine, which then retrieves the documents that best match
that set of terms. The overall architecture of the Nutch
parallel query engine is shown in Figure-2. The query
engine part consists of one or more front-ends, and one or
more back-ends. Each back-end is associated with a
segment of the complete data set. The driver represents
external users and it is the point at which the performance
of the query is measured, in terms of queries per second (qps).

throughput measurement

Figure 2: Overall architecture of Nutch/Lucene query.

A query operation works as follows. The driver
submits a particular query (set of index terms) to one of the
front-ends. The front-end then distributes the query to all
the back-ends. Each back-end is responsible for performing
the query against its data segment and returning a list with
the top documents (typically 10) that best match the query.
Each document returned is associated with a score, which
quantifies how good that match is. The front-end collects
the response from all the back-ends to produce a single list
of the top documents (typically 10 overall best matches).
Once the front-end has that list, it contacts the back-ends to
retrieve snippets of text around the index terms. Only
snippets for the overall top documents are retrieved, and
the front-end contacts the back-ends one at a time,
retrieving the snippet from the back-end that had the
corresponding document in its data segment.
2.5 Parsing:

The PARSED column is always true when using

the crawl tool in Nutch. This column is useful when
running fetchers with parsing turned off, to be run later as
a separate process. The STARTED and FINISHED columns
indicate the times when fetching started and finished. This
information is invaluable for bigger crawls, when tracking
down why crawling is taking a long time.

The value of the property
parser.character.encoding.default is used as a fallback
character encoding (charset) when HTML parser cannot
find the charset information in HTTP Content-Type header

or in META HTTP-EQUIV tag. But the plain text parser
behaves differently. It just uses the system encoding. To
guarantee a consistent behavior, plain text parser should
use the value of the same property.

Segment is basically a folder containing all the data
related to one fetching batch. Fetch List is stored inside
Segment. Besides the Fetch List, the fetched content itself
will be stored there in addition to the extracted plain text
version of the content, anchor texts and URLs of outlinks,
protocol and document level metadata etc. The Link
Database is a data structure (Sequence file, URL -> Inlinks)
that contains all inverted links. In the parsing phase Nutch
can extract outlinks from a document and store them in
format source url -> target_url,anchor_text. In the process
of inversion we invert the order and combine all instances
making the data records in Link Database look like
targetURL -> anchortext[] text so we can use that
information later when individual documents are indexed.

2.6 Searching:

The Nutch Search system also has an external

executable program. This program is called Update
Context. Its function is to analyze the documents that are
being visited by the user, and update the \navigation
context" according to the documents visited by the user.
That is, finding the nearest leaf cluster for each page that
the user visits, and inserting this information into the
database. The information about the \navigation context"
will be used by the \Context Query Filter" plugin. This
plugin will modify the queries submitted by the user
according to the \navigation context", thus adding
information about the navigation context of the user.

Note that the computation of the nearest cluster for
a web page is done while the user is surfing that page, not
while the user submits the query. Therefore, computing the
nearest cluster for a page does not add time to the search
execution. Thus, only the computation of the weight of
context-related terms adds extra time to the query
execution.

Nutch's search user interface runs as a Java Server
Page (JSP) that parses the user's textual query and invokes
the search method of a NutchBean. If Nutch is running on a
single server, this translates the user's query into a Lucene
query and gets a list of hits from Lucene, which the JSP
then renders into HTML. If Nutch is instead distributed
across several servers, the NutchBean's search method
instead remotely invokes the search methods of other
NutchBeans on other machines, which can be configured
either to perform the search locally as described above or
farm pieces of the work out to yet other servers.
Distributed searching is built on top of a custom SIMD
cluster parallelism toolkit in the package net.nutch.ipc,

Driver

Front-end

Front-end

Back-end

Back-end

Back-end

data

data

data

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 770
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

which provides a blocking 'call' method to perform the
same operation in parallel across several servers, and then
gather the results together afterwards. In the terminology
of Nutch uses partition-by-document, where all the postings
for a certain document are stored on the same node.
Consequently every query must be broadcast to all nodes.
In Nutch, the net.nutch.searcher.DistributedSearch.Client
class provides this functionality; it implements the same
net.nutch.searcher.Searcher interface that Nutch uses to
invoke searches on locally-stored segments, represented by
net.nutch.searcher.FetchedSegments objects.

2.7 Distributed File System:

The Distributed Nutch File System, a set of
software for storing very large stream-oriented files over a
set of commodity computers. Files are replicated across
machines for safety, and load is balanced fairly across the
machine set.

The NDFS fills an important hole for the Nutch
project. Right now it is very difficult for a user with a
handful of machines to run a Nutch installation. The files
can easily grow to very large size, possibly larger than any
single available disk. At best, the Nutch operator ends up
spending a lot of time copying files back and forth,
managing what storage is available. This software should
solve the problem. Files are stored as a set of blocks
scattered across machines in a NDFS installation. However,
writers and readers just use a single traditional
input/output stream interface. The details of finding the
correct block and transferring data over the network is
handled automatically by the NDFS.

Further, the NDFS gracefully handles changes in
its machine set. Machines used for storage can be added or
removed, and machines can crash or otherwise become
unavailable. The NDFS will automatically preserve file
availability and replication requirements, if possible. As
long as active machines retain sufficient available storage,
there's no reason to involve a human administrator at all.
The NDFS uses only bare-bones commodity hardware, with
no need for RAID controllers or any other specialized disk
solution.

The end result is that Nutch users should be able to
take advantage of very large amounts of disk storage with
very little administrative overhead.

2.7.1 NDFS File System Semantics:

1. Files can only be written once. After the first write,

they become read-only. (Although they can be
deleted.)

2. Files are stream-oriented; you can only append
bytes, and you can only read/seek forward.

3. There are no user permissions or quotas, although
these could be added fairly easily.

So, all access to the NDFS system is through approved
client code. There is no plan to create an OS-level library to
allow any program to access the system. Nutch is the model
user, although there are probably many applications that
could take advantage of NDFS. (Pretty much anything that
has very large stream-oriented files would find it useful,
such as data mining, text mining, or media-oriented
applications.)

2.7 Scalability:

Nutch hasn't scaled beyond 100 million pages so

far, for both economic and technical reasons. Maintaining
an up-to-date copy of the entire Web is inherently an
expensive proposition, costing substantial amounts of
bandwidth. (Perhaps 10 terabytes per month at minimum,
which is about 30 megabits per second, which costs
thousands of dollars per month)

Answering queries from the general public is also
inherently an expensive proposition, requiring large
amounts of computer equipment to house terabytes of
RAM and large amounts of electricity to power it, as well as
one to three orders of magnitude more bandwidth.

1. Nutch's link analysis stage requires the entire link
database to be available on each machine
participating in the calculation and includes a
significant non-parallel final collation step.

2. As Nutch partitions its posting lists, across cluster
nodes by document, each query must be
propagated to all of the hundreds or thousands of
machines serving a whole-web index. This means
that hardware failures will happen every few
hours, the likelihood of a single slow response
causing a query to wait several seconds for a
retransmission is high, and the CPU resources
required to process any individual query become
significant.

3. As Nutch crawls retrieve unpredictable amounts of
data, load-balancing crawls with limited disk
resources are difficult.
Much of Nutch's distribution across clusters must

be done manually or by home-grown cluster management
machinery; in particular, the distribution of data files for
crawling and link analysis, and the maintenance of search-
servers.txt files all must be done by hand. Large
deployments will require fault-tolerant automation of these
functions.

Further work is being done in this area to enhance
Nutch's scalability. The Nutch Distributed File System
(NDFS) is in current development versions of Nutch, to
enhance performance along the lines proposed by the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 771
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Google File System. NDFS has been used recently to run a
link analysis stage over 35 million pages on twelve
machines.

In the last several years, much work has been
focused on eliminating economic scalability limitations on
services such as file downloading by distributing the work
of providing the service among its users. This has appeared
technically infeasible for a full-text search engine for the
whole Web. However, recent and ongoing work suggests
that this kind of peer-to-peer distribution may soon be
possible.

2.9 Plugin Based Architecture:

The open source nature of Nutch makes it ideal for

modification. This potential for customization is further
aided by the modular nature of Nutch. The Nutch search
engine is built upon a basic code backbone which is
augmented heavily through the use of plugins. Plugins are
program extensions which are be added to a host
application. The release version of Nutch contains dozens
of plugins which may be added or removed as desired by
changing the Nutch configuration. These plugins are
responsible for the parsing of different file types during the
crawl, indexing of crawl results, protocols through which
the crawl can operate, and querying of indexed crawl
results, among other tasks. Essentially, the majority of the
primary search engine functions are performed by plugins.
Therefore, modifying the search engine may be
accomplished by changing the configuration of the plugins,
which may include adding new plugins. In order to add
WordNet-related functionality to Nutch, a plugin should be
created.

3 Who Should Run Nutch-Based Web Search Engine:

Nutch.org is dedicated to making the Nutch

software better for everyone. That might mean running a
small demo site or making a search service available for
academic research, but we do not intend to run a
destination search site. Running such a service would put
Nutch in competition with its users. Instead, we hope that
primarily other institutions will run the Nutch software.
Governments, universities, and nonprofits are terrific
candidates for Nutch. These organizations often have
special obligations that for-profit companies don’t (e.g., a
seniors’ organization might want to offer search with a
special usability focus), so having the source code to Nutch
is a huge advantage. Further, these groups often don’t have
lots of cash to spend on solutions. We don’t have great
data yet on who is running Nutch. As far as we can tell, the
most active Nutch users are universities and academic
research groups. Some are using Nutch as part of a class,

and some are using it because their research depends on
access to indexed pages that they can control. Others are
pulling apart the system, taking elements that seem useful.
It’s too early to expect any updates back from researchers,
but we hope this is coming soon. One type of nonprofit in
particular that we hope to see is a PSE (public search
engine), a search site that is as usable as any commercial
one, but that operates without advertising or commercial
engagement. These engines will help make good on
Nutch’s promise to make search results more transparent to
users. Conversely, they will make for-profit engines easier
to spot if they adjust rankings for commercial gain. A PSE
might get its funds through donations from users,
corporations, or foundations, just as public broadcasting
channels do. It’s worth noting that PSEs do not need to
process a huge percentage of search queries to be
successful. Their existence will ensure that search users
always have a good alternative (one that doesn’t exist
today). Profit corporations will want to run small search
engines for in house use or on their public Web sites. For
most of these companies, search will be just another item
they have to take care of, not their main focus. Nutch
should also enable small search-technology companies to
be more creative, just as other open source projects have
enlarged what small teams can accomplish. We hope that
Nutch, by providing free, open source Web search
software, will help both to promote transparency in Web
search and to advance public knowledge of Web-search
algorithms.
4 Conclusion:

In this paper, I have emphasized the various
phases of Nutch Architecture. I have detailed the strategies
of Web Crawling and indexing the documents in the
Intranet and Internet. Particularly, I have shown that the
web crawling which navigates and retrieves the
information in the web and that the indexing must be
created to allow efficient retrieval of documents from a
corpus. I have presented that Nutch includes a parallel
indexing operation using the MapReduce programming
model and Query represents the majority of the
computation effort. In the parsing phase Nutch can extract
outlinks from a document and store them in the formatted
source.

Finally, I have revealed that the Nutch Search
system is an external executable program. Its function is to
analyze the documents and finding the nearest cluster and
insert the information into the database and the plugins are
responsible for the parsing of different file types during the
crawl, indexing of crawl results, protocols through which
the crawl can operate, and querying of indexed crawl
results, among other tasks. Much of the work was focused
on eliminating economic scalability limitations on services

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 772
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

such as file downloading by providing the service among
its users. Overall, I have concluded that Nutch.org is
dedicated to making the Nutch software is better for
everyone. Hence, the Government, various Universities,
and Nonprofit organizations are promising candidates for
Nutch.

5 References:

1. White, Tom. 2006. “Introduction to Nutch, Part 1:
Crawling”. Retrieved from
http://today.java.net/pub/a/today/2006/01/10/intro
duction-to-nutch-1.html.

2. Smart, John Ferguson. 2006. “Integrate Advanced

Search Functionalities Into Your Apps”. Retrieved
from http://www.javaworld.com/javaworld/jw-09-
2006/jw-0925-lucene.html .

3. Coar, Ken. 2009. "The Open Source Definition".

Retrieved from
http://www.opensource.org/docs/osd.

4. http://en.wikipedia.org/wiki/Open_Source

5. http://lucene.apache.org/nutch/

6. http://www.nutch.org/
 M. Cafarella and D. Cutting. Building Nutch: open
source search. 2004.

IJSER

http://www.ijser.org/
http://today.java.net/pub/a/today/2006/01/10/introduction-to-nutch-1.html
http://today.java.net/pub/a/today/2006/01/10/introduction-to-nutch-1.html
http://www.opensource.org/docs/osd
http://en.wikipedia.org/wiki/Open_Source
http://lucene.apache.org/nutch/
http://www.nutch.org/

